Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Am Chem Soc ; 144(27): 12192-12201, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1977981

ABSTRACT

The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Metal-Organic Frameworks , Aged , COVID-19/prevention & control , Escherichia coli , Humans , Ligands , Metal-Organic Frameworks/pharmacology , Pyrenes , Titanium/pharmacology
2.
J Am Chem Soc ; 143(40): 16777-16785, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1442692

ABSTRACT

The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Chemical Warfare Agents/chemistry , Chlorine/pharmacology , Metal-Organic Frameworks/pharmacology , Protective Clothing , Animals , Anti-Bacterial Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Cell Line , Chlorine/chemistry , Escherichia coli/drug effects , Halogenation , Humans , Metal-Organic Frameworks/chemical synthesis , Microbial Sensitivity Tests , Mustard Gas/analogs & derivatives , Mustard Gas/chemistry , Oxidation-Reduction , SARS-CoV-2/drug effects , Staphylococcus aureus/drug effects , Textiles , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL